Modulation of taste sensitivity by GLP-1 signaling.
نویسندگان
چکیده
In many sensory systems, stimulus sensitivity is dynamically modulated through mechanisms of peripheral adaptation, efferent input, or hormonal action. In this way, responses to sensory stimuli can be optimized in the context of both the environment and the physiological state of the animal. Although the gustatory system critically influences food preference, food intake and metabolic homeostasis, the mechanisms for modulating taste sensitivity are poorly understood. In this study, we report that glucagon-like peptide-1 (GLP-1) signaling in taste buds modulates taste sensitivity in behaving mice. We find that GLP-1 is produced in two distinct subsets of mammalian taste cells, while the GLP-1 receptor is expressed on adjacent intragemmal afferent nerve fibers. GLP-1 receptor knockout mice show dramatically reduced taste responses to sweeteners in behavioral assays, indicating that GLP-1 signaling normally acts to maintain or enhance sweet taste sensitivity. A modest increase in citric acid taste sensitivity in these knockout mice suggests GLP-1 signaling may modulate sour taste, as well. Together, these findings suggest a novel paracrine mechanism for the regulation of taste function.
منابع مشابه
Modulation of taste sensitivity by GLP-1 signaling in taste buds.
Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we fou...
متن کاملLipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity
Glucagon-like peptide-1 (GLP-1) signaling modulates sweet-taste sensitivity in the mouse. Because circumvallate papillae (CVPs) express both GLP-1 and its receptor, a local regulation has been suggested. However, whether dietary lipids are involved in this regulation, as shown in the gut, is unknown. By using a combination of biochemical, immunohistochemical, and behavioral approaches, the pres...
متن کاملGlucagon-like peptide-1 is specifically involved in sweet taste transmission.
Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonst...
متن کاملGut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1.
Glucagon-like peptide-1 (GLP-1), released from gut endocrine L cells in response to glucose, regulates appetite, insulin secretion, and gut motility. How glucose given orally, but not systemically, induces GLP-1 secretion is unknown. We show that human duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Mouse intestinal L...
متن کاملThe aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice
Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides sti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurochemistry
دوره 106 1 شماره
صفحات -
تاریخ انتشار 2008